Exercises

Eigenvectors and Eigenvalues - Solutions

Exercise 1.

$$
\begin{aligned}
& A \cdot a_{1}=\left(\begin{array}{r}
0 \\
-6 \\
8
\end{array}\right)=2 \cdot a_{1} \Rightarrow \underline{\underline{\lambda_{1}=2}} \\
& A \cdot a_{2}=\left(\begin{array}{r}
35 \\
28 \\
21
\end{array}\right)=7 \cdot a_{2} \Rightarrow \underline{\underline{\lambda_{2}=7}} \\
& A \cdot a_{3}=\left(\begin{array}{r}
24 \\
6 \\
8
\end{array}\right) \neq \lambda \cdot a_{3} \quad a_{3} \text { is not an eigenvector }
\end{aligned}
$$

To obtain the third eigenvector, we recall that the $\operatorname{trace} \operatorname{tr}(A)$ is the sum of all eigenvalues, i.e.e $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$. Thus

$$
\lambda_{3}=\operatorname{tr}(A)-\lambda_{1}-\lambda_{2}=(2+2+2)-2-7=-3
$$

Exercise 2. For A, we have $\operatorname{det}(A)=5$, i.e. A^{-1} exists.
Computation of the eigenvalues of A and A^{-1}

- For $A=\left(\begin{array}{rr}4 & \sqrt{3} \\ \sqrt{3} & 2\end{array}\right)$ we get the characteristic polynomial

$$
\begin{aligned}
P_{A}(\lambda) & =|A-\lambda E|=\left|\begin{array}{cc}
4-\lambda & \sqrt{3} \\
\sqrt{3} & 2-\lambda
\end{array}\right| \\
& =(4-\lambda)(2-\lambda)-3=8-6 \lambda+\lambda^{2}-3 \\
& =\lambda^{2}-6 \lambda+5=(\lambda-5)(\lambda-1)
\end{aligned}
$$

The roots $\lambda_{1}=5, \lambda_{2}=1$ of $\mathrm{P}_{A}(\lambda)$ are the eigenvalues of A.

- If x is a eigenvector for the eigenvalue λ of A then we have

$$
A x=\lambda x \Leftrightarrow \underbrace{A^{-1} A}_{I_{n}} x=A^{-1} \lambda x=\lambda A^{-1} x
$$

$$
\Leftrightarrow \quad x=\lambda A^{-1} x \quad \Leftrightarrow \quad A^{-1} x=\frac{1}{\lambda} x
$$

Thus, if x is an eigenvector for the eigenvalue λ for A, then x is also an eigenvector for A^{-1} for the eigenvalue $\frac{1}{\lambda}$. Hence, the eigenvalues of A^{-1} are $\mu_{1}=\frac{1}{5}$ and $\mu_{2}=1$.

Computation of the eigenvectors of A
We want to find the solutions of $(A-\lambda E) x=0$ with $x \neq 0$.

- $\lambda_{1}=5 \Longrightarrow\left(\begin{array}{cc}4-5 & \sqrt{3} \\ \sqrt{3} & 2-5\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$

x_{1}	x_{2}	r.S.
-1	$\sqrt{3}$	0
$\sqrt{3}$	-3	0
1	$-\sqrt{3}$	0
0	0	0

$\Longrightarrow \quad x_{1}=\sqrt{3} x_{2}$

Solution:

$$
x_{2}=t \quad \Rightarrow \quad x=t\binom{\sqrt{3}}{1}, t \in \mathbb{R}, \mathrm{t} \neq 0
$$

- $\lambda_{2}=1 \Longrightarrow\left(\begin{array}{cc}4-1 & \sqrt{3} \\ \sqrt{3} & 2-1\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$

x_{1}	x_{2}	r.S.
3	$\sqrt{3}$	0
$\sqrt{3}$	1	0
1	$\frac{1}{\sqrt{3}}$	0
0	0	0

$$
\Longrightarrow \quad x_{1}=-\frac{1}{\sqrt{3}} x_{2}
$$

$$
x_{2}=t \quad \Rightarrow \quad x=t\binom{-1 / \sqrt{3}}{1}, t \in \mathbb{R}, t \neq 0
$$

Computation of the eigenvectors of A^{-1}

The eigenvectors of A^{-1} are the same as for A.
Exercise 3. We have to solve

$$
0 \stackrel{!}{=}|A-\lambda E|=\operatorname{det}\left(\begin{array}{ccc}
a-\lambda & 0 & 0 \\
0 & 1-\lambda & 0 \\
0 & 0 & a-\lambda
\end{array}\right)=(a-\lambda)^{2}(1-\lambda)
$$

We get the eigenvalues $\lambda_{1 / 2}=a, \lambda_{3}=1$ with the algebraic multiplicities 2 and 1.

$$
\begin{aligned}
0 & \stackrel{!}{=}|B-\lambda E|=\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & a \\
0 & 1-\lambda & 0 \\
a & 0 & -\lambda
\end{array}\right)=(-\lambda)^{2}(1-\lambda)-a^{2}(1-\lambda) \\
& =(1-\lambda)\left(\lambda^{2}-a^{2}\right)=(1-\lambda)(\lambda+a)(\lambda-a)
\end{aligned}
$$

We get the eigenvalues $\lambda_{1}=1, \quad \lambda_{2}=-a, \quad \lambda_{3}=a$.
Exercise 4.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Computation of eigenvalues

$$
\begin{aligned}
0 \stackrel{!}{=}\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right| & =(2-\lambda)^{2}-1=(2-\lambda+1)(2-\lambda-1) \\
& =(3-\lambda)(1-\lambda) \\
& \Longrightarrow \quad \lambda_{1}=3, \quad \lambda_{2}=1
\end{aligned}
$$

$\underline{\text { Computation of eigenvectors }}$

- $\lambda_{1}=3$

$$
\begin{aligned}
& \Longrightarrow\left(\begin{array}{cc}
2-3 & 1 \\
1 & 2-3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \Longrightarrow \begin{array}{rr|r}
x_{1} & x_{2} & \text { r.S. } \\
\hline-1 & 1 & 0 \\
\hline & x_{1}=x_{2}
\end{array} \quad \begin{array}{l}
1 \\
-1
\end{array} \\
& \hline
\end{aligned}
$$

Normalized vector: $\hat{x}_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}$

- $\lambda_{2}=1$

$$
\Longrightarrow\left(\begin{array}{cc}
2-1 & 1 \\
1 & 2-1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0} \quad \Longrightarrow \quad x_{1}=-x_{2}
$$

Normalized vector: $\widehat{\mathrm{x}}_{2}=\frac{1}{\sqrt{2}}\binom{-1}{1}$
Thus we get

$$
\begin{aligned}
A & =X \wedge X^{-1} \\
\text { with } \quad \Lambda & =\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right) \quad X=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right), \quad X^{-1}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

With $A^{5}=X \wedge^{5} X^{-1}$ we can compute

$$
\begin{aligned}
\Longrightarrow A^{5} & =\left(\frac{1}{\sqrt{2}}\right)^{2}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)^{5}\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
243 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{rr}
243 & -1 \\
243 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{rr}
244 & 242 \\
242 & 244
\end{array}\right)=\left(\begin{array}{ll}
122 & 121 \\
121 & 122
\end{array}\right)
\end{aligned}
$$

Exercise 5. The matrix A has the eigenvalue $\lambda=0$ if and only if

$$
0=\operatorname{det}\left(A-\lambda I_{n}\right)=\operatorname{det}(A) .
$$

Since A is invertible if and only if $\operatorname{det}(A) \neq 0$ the claim follows.

Exercise 6.

1. The matrix P is

$$
P=\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{3}{4}
\end{array}\right) .
$$

2. (a) The distribution after one day is

$$
v_{1}=\mathrm{P} \cdot v_{0}=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{3}{166} \\
\frac{9}{16}
\end{array}\right)
$$

(b) The distribution after two days is

$$
v_{2}=\mathrm{P} \cdot v_{1}=\mathrm{P} \cdot \mathrm{P} \cdot v_{0}=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{7}{64} \\
\frac{41}{64}
\end{array}\right)
$$

(c) We want to compute

$$
v_{100}=\mathrm{P}^{100} \cdot v_{0}
$$

With the diagonalization $\mathrm{P}=\mathrm{VDV}^{-1}$ we can compute the matrix power as

$$
\mathrm{P}^{100}=\mathrm{VD}^{100} \mathrm{~V}^{-1}
$$

So we compute the eigenvalues of P :

$$
\begin{aligned}
P_{A}(\lambda) & =\operatorname{det}\left[\left(\begin{array}{ccc}
\frac{1}{4}-\lambda & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}-\lambda & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{3}{4}-\lambda
\end{array}\right)\right] \\
& =\left(\frac{1}{4}-\lambda\right)\left(\frac{1}{4}-\lambda\right)\left(\frac{3}{4}-\lambda\right)+0+\frac{1}{32}-\frac{1}{8}\left(\frac{1}{4}-\lambda\right)-0-\frac{1}{16}\left(\frac{3}{4}-\lambda\right) \\
& =-\lambda\left(\lambda^{2}-\frac{5}{4} \lambda+\frac{1}{4}\right) \\
& =-\lambda\left(\lambda-\frac{1}{4}\right)(\lambda-1)
\end{aligned}
$$

So the Eigenvalues are 0, $\frac{1}{4}, 1$. The eigenvectors are

$$
\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), \quad\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right), \quad\left(\begin{array}{c}
\frac{3}{8} \\
\frac{1}{8} \\
1
\end{array}\right)
$$

and thus with

$$
\mathrm{V}=\left(\begin{array}{ccc}
-1 & 0 & \frac{3}{8} \\
1 & -1 & \frac{1}{8} \\
0 & 1 & 1
\end{array}\right) \text { and } \mathrm{V}^{-1}=\left(\begin{array}{ccc}
\frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\
-\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\
-\frac{3}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
$$

we have

$$
\mathrm{P}=\mathrm{V}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{V}^{-1}
$$

and can compute

$$
\mathrm{P}^{100}=\mathrm{V}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{400} & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{V}^{-1} \approx \mathrm{~V}\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{V}^{-1}=\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\
\frac{2}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right)
$$

and finally get

$$
\mathrm{P}^{100} v_{0} \approx\left(\begin{array}{lll}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\
\frac{2}{3} & \frac{2}{3} & \frac{2}{3}
\end{array}\right) \cdot\left(\begin{array}{c}
0.5 \\
0.25 \\
0.25
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{4} \\
\frac{1}{12} \\
\frac{2}{3}
\end{array}\right)
$$

3. We want a vector π with $\mathrm{P} \pi=\pi$, i.e. an eigenvector for the eigenvalue $\lambda=1$. From the previous part we know that

$$
v=\left(\begin{array}{c}
\frac{3}{8} \\
\frac{1}{8} \\
1
\end{array}\right)
$$

is an eigenvalue for $\lambda=1$. Since all proportions need to sum up to 1 we need to scale this vector by $\frac{2}{3}$ and obtain the vector

$$
\pi=\frac{2}{3} v=\left(\begin{array}{c}
\frac{2}{8} \\
\frac{1}{12} \\
\frac{2}{3}
\end{array}\right) .
$$

